BMAL1-depletion remodels ceramide metabolism to regulate ferroptosis and sorafenib chemosensitivity in acute myeloid leukemia.

BMAL1 耗竭重塑神经酰胺代谢,从而调节急性髓系白血病中的铁死亡和索拉非尼化疗敏感性

阅读:5
作者:Zheng Hong, Lin Zhi, Wang Dan, Zhang Jing, Zeng Ting, Shen Jie, Li Jia-Da, Yang Minghua
Acute myeloid leukemia (AML) is a hematologic malignancy with a poor prognosis. We discovered that BMAL1 is a ferroptosis suppressor. Furthermore, it was also found to be overexpressed in AML patients, affecting the cell cycle and promoting tumor cell growth and progression. In this study, we further validated the association of BMAL1 with the progression and survival outcomes of AML. Lipidomic revealed that the levels of ceramide increased in AML cells following the depletion of BMAL1. Ceramide facilitated ferroptosis in AML cells. ASAH2 played a key role in this process. BMAL1 could not directly regulate ASAH2 but instead through IKZF2. Elevated levels of ceramide promoted the degradation of the ferroptosis protection molecule GPX4, ultimately promoting ferroptosis. Furthermore, ceramide treatment has been demonstrated to enhance the responsiveness of AML cells to sorafenib. In summary, this study elucidates that BMAL1 depletion remodels ceramide metabolism to regulate the sensitivity of AML cells to ferroptosis and targeted drug sorafenib.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。