Glycopolymer nanomicelles: pH-responsive drug delivery, endocytosis pathway, autophagy behavior, and the effect of autophagy inhibitors.

糖聚合物纳米胶束:pH响应性药物递送、内吞途径、自噬行为以及自噬抑制剂的作用

阅读:6
作者:Wang Zhao, Sun Jingjing, Jia Lin, Sheng Ruilong
Glycopolymer drug delivery nanosystems have attracted increasing attention in the field of sustainable biomaterials and clinical biomedicine, while few studies addressed their intracellular drug delivery properties, endocytosis pathways, intracellular trafficking, autophagy behaviors and the effect of autophagy inhibitors. Based on our previous study, in this work, a pH-responsive glycopolymer (PMAgala(18)-b-P(MAA(24)-co-MAChol(6))) was synthesized and used as a drug delivery carrier, to encapsulate antitumor drug doxorubicin (DOX) into nanomicelles, with high DOX loading efficiency and pH-responsive DOX release properties. The cytotoxicity, cell proliferation inhibition, endocytosis pathway, intracellular trafficking/localization, and autophagy behavior of the blank glycopolymer micelles and/or DOX-loaded micelles were studied in a Human Glioblastoma Carcinoma (H4) and green fluorescent protein-tagged H4-GFP-LC3 cell lines. The glycopolymer micelles could be taken up into the cells through favorable caveolae-mediated and clathrin-mediated endocytic pathways, and their intracellular trafficking/localization were associated with endosome-lysosome systems. Notably, after treating with DOX-loaded glycopolymer micelles (or free DOX) to the H4-GFP-LC3 cells, exogenous substances-induced autophagosome accumulation was observed. The autophagy inhibitors: 3-methyladenine (3-MA) and hydroxychloroquine (HCQ) were used to monitor the autophagy behavior of H4-GFP-LC3 cells incubated with the micelles. Interestingly, the autophagy inhibitors could significantly enhance the antitumor performance of the free DOX and/or DOX-loaded micelles, the drug combination effect of autophagy inhibitors and DOX was further studied by Bliss independent model analysis. Taken together, this work provided a preliminary understanding of the intracellular drug delivery properties of glycopolymer micelles and demonstrated the effect of different autophagy inhibitors, which might inspire future innovation of "autophagy regulator-combined nanotherapeutics" toward efficient cancer chemotherapy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。