Research on Sinomenine Inhibiting the cGAS-STING Signaling Pathway to Alleviate Renal Inflammatory Injury in db/db Mice.

青藤碱抑制cGAS-STING信号通路减轻db/db小鼠肾脏炎症损伤的研究

阅读:9
作者:Jin Xiaofei, He Tongtong, Zhang Tianci, Wang Xiaorong, Chen Xiangmei, Cong Bin, Gao Weijuan
Objectives: This study aims to elucidate the potential molecular mechanism of Sinomenine (SIN) in treating renal injury in Diabetic Nephropathy (DN) through network pharmacology, molecular docking, and in vivo validation. Materials and Methods: db/db mice were used as a DN model to evaluate the therapeutic effects of SIN on body weight, blood glucose levels, renal function, and histopathology. Network pharmacology and molecular docking were integrated to predict the potential molecular mechanisms of SIN in DN treatment. Subsequently, in vivo validation was performed on db/db mice using ELISA, Western blotting, RT-qPCR, immunofluorescence, and immunohistochemistry. Results: Firstly, we found that SIN (62.4 mg/kg) improved general conditions and renal function in db/db mice, alleviating renal pathological damage. Network pharmacology analysis identified IL-1β, IL-6, and TNF-α as key targets of SIN in DN. SIN reduced IL-1β, IL-6, and TNF-α levels by inhibiting the cGAS/STING signaling pathway and its downstream p-TBK1, p-IRF3, and NF-κB expression. Conclusions: SIN alleviates inflammatory injury in DN, potentially through the cGAS/STING pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。