BACKGROUND: The anticancer drug camptothecin (CPT), first isolated from Camptotheca acuminata, was subsequently discovered in unrelated plants, including Ophiorrhiza pumila. Unlike known monoterpene indole alkaloids, CPT in C. acuminata is biosynthesized via the key intermediate strictosidinic acid, but how O. pumila synthesizes CPT has not been determined. RESULTS: In this study, we used nontargeted metabolite profiling to show that 3α-(S)-strictosidine and 3-(S), 21-(S)-strictosidinic acid coexist in O. pumila. After identifying the enzymes OpLAMT, OpSLS, and OpSTR as participants in CPT biosynthesis, we compared these enzymes to their homologues from two other representative CPT-producing plants, C. acuminata and Nothapodytes nimmoniana, to elucidate their phylogenetic relationship. Finally, using labelled intermediates to resolve the CPT biosynthesis pathway in O. pumila, we showed that 3α-(S)-strictosidine, not 3-(S), 21-(S)-strictosidinic acid, is the exclusive intermediate in CPT biosynthesis. CONCLUSIONS: In our study, we found that O. pumila, another representative CPT-producing plant, exhibits metabolite diversity in its central intermediates consisting of both 3-(S), 21-(S)-strictosidinic acid and 3α-(S)-strictosidine and utilizes 3α-(S)-strictosidine as the exclusive intermediate in the CPT biosynthetic pathway, which differs from C. acuminata. Our results show that enzymes likely to be involved in CPT biosynthesis in O. pumila, C. acuminata, and N. nimmoniana have evolved divergently. Overall, our new data regarding CPT biosynthesis in O. pumila suggest evolutionary divergence in CPT-producing plants. These results shed new light on CPT biosynthesis and pave the way towards its industrial production through enzymatic or metabolic engineering approaches.
Divergent camptothecin biosynthetic pathway in Ophiorrhiza pumila.
蛇根草中喜树碱生物合成途径的差异
阅读:4
作者:Yang Mengquan, Wang Qiang, Liu Yining, Hao Xiaolong, Wang Can, Liang Yuchen, Chen Jianbo, Xiao Youli, Kai Guoyin
| 期刊: | BMC Biology | 影响因子: | 4.500 |
| 时间: | 2021 | 起止号: | 2021 Jun 16; 19(1):122 |
| doi: | 10.1186/s12915-021-01051-y | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
