As a master regulator of the balance between NO signaling and protein S-nitrosylation, S-nitrosoglutathione (GSNO) reductase (GSNOR) is involved in various developmental processes and stress responses. However, the proteins and specific sites that can be S-nitrosylated, especially in microorganisms, and the physiological functions of S-nitrosylated proteins remain unclear. Herein, we show that the ganoderic acid (GA) content in GSNOR-silenced (GSNORi) strains is significantly lower (by 25%) than in wild type (WT) under heat stress (HS). Additionally, silencing GSNOR results in an 80% increase in catalase (CAT) activity, which consequently decreases GA accumulation via inhibition of ROS signaling. The mechanism of GSNOR-mediated control of CAT activity may be via protein S-nitrosylation. In support of this possibility, we show that CAT is S-nitrosylated (as shown via recombinant protein in vitro and via GSNORi strains in vivo). Additionally, Cys (cysteine) 401, Cys642 and Cys653 in CAT are S-nitrosylation sites (assayed via mass spectrometry analysis), and Cys401 may play a pivotal role in CAT activity. These findings indicate a mechanism by which GSNOR responds to stress and regulates secondary metabolite content through protein S-nitrosylation. Our results also define a new S-nitrosylation site and the function of an S-nitrosylated protein regulated by GSNOR in microorganisms.
GSNOR regulates ganoderic acid content in Ganoderma lucidum under heat stress through S-nitrosylation of catalase.
在热应激条件下,GSNOR 通过过氧化氢酶的 S-亚硝基化来调节灵芝中的灵芝酸含量
阅读:5
作者:Liu Rui, Zhu Ting, Chen Xin, Wang Zi, Yang Zhengyan, Ren Ang, Shi Liang, Yu Hanshou, Zhao Mingwen
| 期刊: | Communications Biology | 影响因子: | 5.100 |
| 时间: | 2022 | 起止号: | 2022 Jan 11; 5(1):32 |
| doi: | 10.1038/s42003-021-02988-0 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
