Dapagliflozin attenuates atrial fibrosis via the HMGB1/RAGE pathway in atrial fibrillation rats.

达格列净通过 HMGB1/RAGE 通路减轻房颤大鼠的心房纤维化

阅读:4
作者:Tan Zhenni, Chang Jianxiang, Li Yin, Sun Xiang, Liu Fanxiang, Chen Yang, Pan Lin
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia. A key pathological feature of AF is atrial fibrosis, which promotes arrhythmogenic remodeling. While myocardial fibrosis has been widely observed in AF models, the underlying molecular mechanisms driving fibrotic progression remain incompletely understood. AF rats were modeled using acetylcholine, followed by treatment with different concentrations of dapagliflozin (DAPA) or positive control amiodarone. To elucidate the role of the high-mobility group box 1 (HMGB1)/receptor for advanced glycation end products (RAGE) pathway in AF, lipopolysaccharide (LPS; an HMGB1/RAGE pathway activator) and FPS-ZM1 (a RAGE inhibitor) were employed. Cardiac function, myocardial fibrosis, and inflammation-related proteins were assessed using echocardiography, enzyme-linked immunosorbent assay, histological staining, Western blotting, and reverse transcription quantitative polymerase chain reaction. AF rats exhibited marked cardiac dysfunction, fibrosis, and increased expression of inflammatory markers. DAPA restored cardiac function, attenuating fibrosis and inflammation. LPS aggravated cardiac injury, while DAPA attenuated the damage, with the greatest protective effects observed in the LPS + DAPA + FPS-ZM1 group. DAPA attenuates atrial fibrosis and cardiac dysfunction in AF rats by inhibiting the HMGB1/RAGE pathway. This study suggests the potential of DAPA as a therapeutic option for AF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。