Improved Translational Relevance of In Vitro Fibrosis Models by Integrating IOX2-Mediated Hypoxia-Mimicking Pathways.

通过整合 IOX2 介导的缺氧模拟通路,提高体外纤维化模型的转化相关性

阅读:4
作者:González Hernández Manuel A, Venhorst Jennifer, Verschuren Lars, Toet Karin, Caspers Martien P M, Morrison Martine C, Coornaert Beatrice, van Westen Gerard J P, Hanemaaijer Roeland
Background/Objectives: Preclinical models of liver fibrosis only partially mimic human disease processes. Particularly, traditional transforming growth factor beta 1 (TGFβ1)-induced hepatic stellate cell (HSC) models lack relevant processes, including hypoxia-induced pathways. Here, the ability of a hypoxia-mimicking compound (IOX2) to more accurately reflect the human fibrotic phenotype on a functional level was investigated. Methods: Human primary HSCs were stimulated (TGFβ1 +/- IOX2), and the cell viability and fibrotic phenotype were determined. The latter was assessed as protein levels of fibrosis markers-collagen, TIMP-1, and Fibronectin. Next-generation sequencing (NGS), differential expression analyses (DESeq2), and Ingenuity Pathway Analysis (IPA) were performed for mechanistic evaluation and biological annotation. Results: Stimulation with TGFβ1 + IOX2 significantly increased fibrotic marker levels. Also, fibrosis-related pathways were activated, and hypoxia-related genes and collagen modifications, such as crosslinking, increased dose-dependently. Comparative analysis with human fibrotic DEGs showed improved disease representation in the HSC model in the presence of IOX2. Conclusions: In conclusion, the HSC model better recapitulated liver fibrosis by IOX2 administration. Therefore, hypoxia-mimicking compounds hold promise for enhancing the translational value of in vitro fibrosis models, providing valuable insights in liver fibrosis pathogenesis and potential therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。