Spinal cord injury causes neuronal death, limiting subsequent regeneration and recovery. Thus, there is a need to develop strategies for improving neuronal survival after injury. Relative to our understanding of axon regeneration, comparatively little is known about the mechanisms that promote the survival of damaged neurons. To address this, we took advantage of lamprey giant reticulospinal neurons whose large size permits detailed examination of post-injury molecular responses at the level of individual, identified cells. We report here that spinal cord injury caused a select subset of giant reticulospinal neurons to accumulate synuclein, a synaptic vesicle-associated protein best known for its atypical aggregation and causal role in neurodegeneration in Parkinson's and other diseases. Post-injury synuclein accumulation took the form of punctate aggregates throughout the somata and occurred selectively in dying neurons, but not in those that survived. In contrast, another synaptic vesicle protein, synaptotagmin, did not accumulate in response to injury. We further show that the post-injury synuclein accumulation was greatly attenuated after single dose application of either the "molecular tweezer" inhibitor, CLR01, or a translation-blocking synuclein morpholino. Consequently, reduction of synuclein accumulation not only improved neuronal survival, but also increased the number of axons in the spinal cord proximal and distal to the lesion. This study is the first to reveal that reducing synuclein accumulation is a novel strategy for improving neuronal survival after spinal cord injury.
Reducing synuclein accumulation improves neuronal survival after spinal cord injury.
减少突触核蛋白的积累可以提高脊髓损伤后神经元的存活率
阅读:6
作者:Fogerson Stephanie M, van Brummen Alexandra J, Busch David J, Allen Scott R, Roychaudhuri Robin, Banks Susan M L, Klärner Frank-Gerrit, Schrader Thomas, Bitan Gal, Morgan Jennifer R
| 期刊: | Experimental Neurology | 影响因子: | 4.200 |
| 时间: | 2016 | 起止号: | 2016 Apr;278:105-15 |
| doi: | 10.1016/j.expneurol.2016.02.004 | 研究方向: | 神经科学 |
| 疾病类型: | 脊髓损伤 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
