We have cloned and characterized mouse and human variants of MONaKA, a novel protein that interacts with and modulates the plasma membrane Na,K-ATPase. MONaKA was cloned based on its sequence homology to the Drosophila Slowpoke channel-binding protein dSlob, but mouse and human MONaKA do not bind to mammalian Slowpoke channels. At least two splice variants of MONaKA exist; the splicing is conserved perfectly between mouse and human, suggesting that it serves some important function. Both splice variants of MONaKA are expressed widely throughout the CNS and peripheral nervous system, with different splice variant expression ratios in neurons and glia. A yeast two-hybrid screen with MONaKA as bait revealed that it binds tightly to the beta1 and beta3 subunits of the Na,K-ATPase. The association between MONaKA and Na,K-ATPase beta subunits was confirmed further by coimmunoprecipitation from transfected cells, mouse brain, and cultured mouse astrocytes. A glutathione S-transferase-MONaKA fusion protein inhibits Na,K-ATPase activity from whole brain or cultured astrocytes. Furthermore, transfection of MONaKA inhibits 86Rb+ uptake via the Na,K-ATPase in intact cells. These results are consistent with the hypothesis that MONaKA modulates brain Na,K-ATPase and may thereby participate in the regulation of electrical excitability and synaptic transmission.
MONaKA, a novel modulator of the plasma membrane Na,K-ATPase.
MONaKA,一种新型的质膜Na,K-ATPase调节剂
阅读:3
作者:Mao Hua, Ferguson Tanya S, Cibulsky Susan M, Holmqvist Mats, Ding Chunming, Fei Hong, Levitan Irwin B
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2005 | 起止号: | 2005 Aug 31; 25(35):7934-43 |
| doi: | 10.1523/JNEUROSCI.0635-05.2005 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
