Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle.

循环中的 ATP 诱导的血管舒张作用可以抑制人体骨骼肌中的交感神经血管收缩作用

阅读:8
作者:Rosenmeier Jaya B, Hansen Jim, González-Alonso José
Despite increases in muscle sympathetic vasoconstrictor activity, skeletal muscle blood flow and O2 delivery increase during exercise in humans in proportion to the local metabolic demand, a phenomenon coupled to local reductions in the oxygenation state of haemoglobin and concomitant increases in circulating ATP. We tested the hypothesis that circulating ATP contributes to local blood flow and O2 delivery regulation by both inducing vasodilatation and blunting the augmented sympathetic vasoconstrictor activity. In eight healthy subjects, we first measured leg blood flow (LBF) and mean arterial pressure (MAP) during three hyperaemic conditions: (1) intrafemoral artery adenosine infusion (vasodilator control), (2) intrafemoral artery ATP infusion (vasodilator), and (3) mild knee-extensor exercise (approximately 20 W), and then compared the responses with the combined infusion of the vasoconstrictor drug tyramine, which evokes endogenous release of noradrenaline from sympathetic nerve endings. In all three hyperaemic conditions, LBF equally increased from approximately 0.5 +/- 0.1 l min(-1) at rest to approximately 3.6 +/- 0.3 l min(-1), with no change in MAP. Tyramine caused significant leg vasoconstriction during adenosine infusion (53 +/- 5 and 56 +/- 5% lower LBF and leg vascular conductance, respectively, P < 0.05), which was completely abolished by both ATP infusion and exercise. In six additional subjects resting in the sitting position, intrafemoral artery infusion of ATP increased LBF and leg vascular conductance 27 +/- 3-fold, despite concomitant increases in venous noradrenaline and muscle sympathetic nerve activity of 2.5 +/- 0.2- and 2.4 +/- 0.1-fold, respectively. Maximal ATP-induced vasodilatation at rest accounted for 78% of the peak LBF during maximal bicycling exercise. Our findings in humans demonstrate that circulating ATP is capable of regulating local skeletal muscle blood flow and O2 delivery by causing substantial vasodilatation and negating the effects of increased sympathetic vasoconstrictor activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。