Emergence of a spermine-sensitive, non-inactivating conductance in mature hippocampal CA1 pyramidal neurons upon reduction of extracellular Ca2+: dependence on intracellular Mg2+ and ATP.

细胞外 Ca2+ 减少时,成熟海马 CA1 锥体神经元中出现对亚精胺敏感的非失活电导:依赖于细胞内 Mg2+ 和 ATP

阅读:5
作者:Chinopoulos Christos, Connor John A, Shuttleworth C William
Large and protracted elevations of intracellular [Ca(2+)] and [Na(+)] play a crucial role in neuronal injury in ischemic conditions. In addition to excessive glutamate receptor activation, other ion channels may contribute to disruption of intracellular ionic homeostasis. During episodes of ischemia, extracellular [Ca(2+)] falls significantly. Here we report the emergence of an inward current in hippocampal CA1 pyramidal neurons in acute brain slices from adult mice upon reduction/removal of [Ca(2+)](e). The magnitude of the current was 100-300pA at -65mV holding potential, depending on intracellular constituents. The current was accompanied by intense neuronal discharge, observed in both whole-cell and cell-attached patch configurations. Sustained currents and increased neuronal firing rates were both reversed by restoration of physiological levels of [Ca(2+)](e), or by application of spermine (1mM). The amplitudes of the sustained currents were strongly reduced by raising intracellular [Mg(2+)], but not by extracellular [Mg(2+)] increases. Elevated intracellular ATP also reduced the current. This conductance is similar in several respects to the "calcium-sensing, non-selective cation current" (csNSC), previously described in cultured mouse hippocampal neurons of embryonic origin. The dependence on intracellular [ATP] and [Mg(2+)] shown here, suggests a possible role for this current in disruption of ionic homeostasis during metabolic stress that accompanies excessive neuronal stimulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。