The Mgv1-Rlm1 axis orchestrates SAGA and SWI/SNF complexes at target promoters.

Mgv1-Rlm1轴协调靶启动子处的SAGA和SWI/SNF复合物

阅读:4
作者:Xu Chaoyun, Zhang Yueqi, Zhang Chengqi, Chen Li, Yin Yanni, Chen Yun, Liu Zunyong, Ma Zhonghua
The SWI/sucrose non-fermentable (SWI/SNF)-facilitated removal of nucleosomes and Spt-Ada-Gcn5 acetyltransferase (SAGA) complex-mediated histone acetylation are crucial for the activation of transcription initiation. However, the mechanism by which these two complexes coordinate to regulate gene expression involved in cell wall remodeling during infection process or in response to external stimuli remains largely unknown in plant pathogenic fungi. Here, we demonstrate that the cell wall integrity (CWI) pathway is activated under toxin (deoxynivalenol)-inducing conditions in the phytopathogenic fungus Fusarium graminearum. This treatment results in the phosphorylation and nuclear translocation of the mitogen-activated protein kinase FgMgv1 in the CWI signaling pathway. Once in the nucleus, the activated FgMgv1 phosphorylates the downstream transcription factor FgRlm1, which binds to a 12- or 14-bp cis-element in the promoters of target genes. Notably, FgMgv1 forms a polymer and interacts with FgRlm1 via its kinase domain. Crucially, this polymerization enables FgMgv1 to recruit both the SWI/SNF and SAGA complexes simultaneously through its C-terminal domain at the target promoters. This coordinated action among FgMgv1, FgRlm1, SWI/SNF, and SAGA ultimately facilitates the transcriptional activation of target genes. Collectively, these findings illuminate a regulatory framework in which Mgv1-Rlm1 axis serves as a key regulatory hub, integrating CWI signals with epigenetic modifications to ensure transcriptional responsiveness to external stimuli.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。