Bipartite anchoring of SCREAM enforces stomatal initiation by coupling MAP kinases to SPEECHLESS.

SCREAM 的双重锚定通过将 MAP 激酶与 SPEECHLESS 偶联来促进气孔起始

阅读:4
作者:Putarjunan Aarthi, Ruble Jim, Srivastava Ashutosh, Zhao Chunzhao, Rychel Amanda L, Hofstetter Alex K, Tang Xiaobo, Zhu Jian-Kang, Tama Florence, Zheng Ning, Torii Keiko U
Cell fate in eukaryotes is controlled by mitogen-activated protein kinases (MAPKs) that translate external cues into cellular responses. In plants, two MAPKs-MPK3 and MPK6-regulate diverse processes of development, environmental response and immunity. However, the mechanism that bridges these shared signalling components with a specific target remains unresolved. Focusing on the development of stomata-epidermal valves that are essential for gas exchange and transpiration-here, we report that the basic helix-loop-helix protein SCREAM functions as a scaffold that recruits MPK3/6 to downregulate SPEECHLESS, a transcription factor that initiates stomatal cell lineages. SCREAM directly binds to MPK3/6 through an evolutionarily conserved, yet unconventional, bipartite motif. Mutations in this motif abrogate association, phosphorylation and degradation of SCREAM, unmask hidden non-redundancies between MPK3 and MPK6, and result in uncontrolled stomatal differentiation. Structural analyses of MPK6 with a resolution of 2.75 à showed bipartite binding of SCREAM to MPK6 that is distinct from an upstream MAPKK. Our findings elucidate, at the atomic resolution, the mechanism that directly links extrinsic signals to transcriptional reprogramming during the establishment of stomatal cell fate, and highlight a unique substrate-binding mode adopted by plant MAPKs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。