In many industrial activities, workers may be exposed by inhalation to particles that are aerosolized, To predict the human health hazard of these materials, we propose to develop a co-culture model (macrophages, granulocytes, and alveolar epithelial cells) designed to be more representative of the inflammatory pulmonary response occurring in vivo. Phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells were used as macrophages, All-trans retinoic acid (ATRA)-differentiated HL60 were used as granulocytes and A549 were used as epithelial alveolar type II cells. A crystalline silica sample DQ12 was used as a prototypical particle for its capabilities to induce DNA damage, inflammatory response, and oxidative stress in epithelial cells; its polyvinylpyridine-N-oxide (PVNO)-surface modified counterpart was also used as a negative particulate control. Cells in mono-, bi- or tri-culture were exposed to DQ12 or DQ12-PVNO for 24 h. DQ12 but not DQ12-PVNO induced a significant increase in DNA damage in A549 cells. The presence of differentiated THP-1 reduced the genotoxic effects of this crystalline silica sample. The exposure of A549 to DQ12 but not DQ12-PVNO induced a significant change in interleukin-8 (IL-8) protein levels which was exacerbated when differentiated THP-1, and HL-60, were added. In addition, while no production of TNFα was detected in the A549 monoculture, elevated levels of this cytokine were observed in the co-culture systems. This work shows that a cell culture model that takes into consideration the complexity of the pulmonary inflammatory response might be more dependable to study the toxicological properties of particles than "simple" monoculture models.
Influence of macrophages and neutrophilic granulocyte-like cells on crystalline silica-induced toxicity in human lung epithelial cells.
巨噬细胞和中性粒细胞样细胞对结晶二氧化硅诱导的人肺上皮细胞毒性的影响
阅读:8
作者:Gaté Laurent, Sébillaud Sylvie, Lorcin Mylène, Seidel Carole, Darne Christian
| 期刊: | Toxicology Research | 影响因子: | 2.100 |
| 时间: | 2025 | 起止号: | 2025 Jan 12; 14(1):tfaf004 |
| doi: | 10.1093/toxres/tfaf004 | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
