Streamlined duplex live-dead microplate assay for cultured cells.

简化的双重活死细胞微孔板检测方法,适用于培养细胞

阅读:3
作者:Pfeffer Bruce A, Fliesler Steven J
A duplex fluorescence assay to assess the viability of cells cultured in multi-well plates is described, which can be carried out in the original culture plate using a plate reader, without exchanges of culture or assay medium, or transfer of cells or cell supernatant. The method uses freshly prepared reagents and does not rely on a proprietary, commercially supplied kit. Following experimental treatment, calcein acetoxymethyl ester (CaAM) is added to each well of cultured cells; after 30 min, the fluorescence intensity (emission λ(max) ∼ 530 nm) is measured. The signal is due to formation of calcein, which is produced from CaAM by action of esterase activity found in intact live cells. Since live cells may express plasma membrane multidrug transport proteins, especially of the ABC transporter family, the CaAM incubation is carried out in the presence of an inhibitor of this efflux process, thereby improving the dynamic range of the assay. Next, SYTOX(®) Orange (SO) is added to the culture wells, and, after a 30-min incubation, fluorescence intensity (emission λ(max) ∼ 590 nm) is measured again. SO is excluded from cells that have an intact plasma membrane, but penetrates dead/dying cells and can diffuse into the nucleus, where it binds to and forms a fluorescent complex with DNA. The CaAM already added to the wells causes no interference with the latter fluorescent signal. At the conclusion of the duplex assay, both live and dead cells remain in the culture wells and can be documented by digital imaging to demonstrate correlation of cellular morphology with the assay output. Two examples of the application of this method are provided, using cytotoxic compounds having different mechanisms of action.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。