Genetic interaction networks that underlie most human diseases are highly complex and poorly defined. Better-defined networks will allow identification of a greater number of therapeutic targets. Here we introduce our Yeast Augmented Network Analysis (YANA) approach and test it with the X-linked spinal muscular atrophy (SMA) disease gene UBA1. First, we express UBA1 and a mutant variant in fission yeast and use high-throughput methods to identify fission yeast genetic modifiers of UBA1. Second, we analyze available protein-protein interaction network databases in both fission yeast and human to construct UBA1 genetic networks. Third, from these networks we identified potential therapeutic targets for SMA. Finally, we validate one of these targets in a vertebrate (zebrafish) SMA model. This study demonstrates the power of combining synthetic and chemical genetics with a simple model system to identify human disease gene networks that can be exploited for treating human diseases.
Yeast Augmented Network Analysis (YANA): a new systems approach to identify therapeutic targets for human genetic diseases.
酵母增强网络分析(YANA):一种识别人类遗传疾病治疗靶点的新系统方法
阅读:4
作者:Wiley David J, Juan Ilona, Le Hao, Cai Xiaodong, Baumbach Lisa, Beattie Christine, D'Urso Gennaro
| 期刊: | F1000Research | 影响因子: | 0.000 |
| 时间: | 2014 | 起止号: | 2014 Jun 2; 3:121 |
| doi: | 10.12688/f1000research.4188.1 | 种属: | Human、Yeast |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
