Kinetochore capture and transport by spindle microtubules plays a crucial role in high-fidelity chromosome segregation, although its detailed mechanism has remained elusive. It has been difficult to observe individual kinetochore-microtubule interactions because multiple kinetochores are captured by microtubules during a short period within a small space. We have developed a method to visualize individual kinetochore-microtubule interactions in Saccharomyces cerevisiae, by isolating one of the kinetochores from others through regulation of the activity of a centromere. We detail this technique, which we call 'centromere reactivation system', for dissection of the process of kinetochore capture and transport on mitotic spindle. Kinetochores are initially captured by the side of microtubules extending from a spindle pole, and subsequently transported poleward along them, which is an evolutionarily conserved process from yeast to vertebrate cells. Our system, in combination with amenable yeast genetics, has proved useful to elucidate the molecular mechanisms of kinetochore-microtubule interactions. We discuss practical considerations for applying our system to live cell imaging using fluorescence microscopy.
Live-cell analysis of kinetochore-microtubule interaction in budding yeast.
出芽酵母动粒-微管相互作用的活细胞分析
阅读:4
作者:Tanaka Kozo, Kitamura Etsushi, Tanaka Tomoyuki U
| 期刊: | Methods | 影响因子: | 4.300 |
| 时间: | 2010 | 起止号: | 2010 Jun;51(2):206-13 |
| doi: | 10.1016/j.ymeth.2010.01.017 | 种属: | Yeast |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
