Plant height is among the most important agronomic traits that influence crop yield. However, in addition to the Rht-1 alleles, the molecular basis of plant height in bread wheat remains largely unclear. Based on wheat gene expression profiling analysis, we identify a light-regulated gene from bread wheat, designated as TaCOLD1, whose encoding protein is homologous to cold sensor COLD1 in rice. We show that TaCOLD1 protein is localized to the endoplasmic reticulum (ER) and plasma membrane. Phenotypic analyses show that overexpression of a mutated form of TaCOLD1 (M187K) in bread wheat cultivar Kenong199 (Rht-B1b) background resulted in an obvious reduction in plant height. Further, we demonstrate that the hydrophilic loop of TaCOLD1 (residues 178-296) can interact with TaGα-7A (the α subunit of heterotrimeric G protein) protein but not TaGα-1B, and the mutation (M187K) in TaCOLD1 remarkably enhances its interaction with TaGα-7A. Physical interaction analyses show that the C-terminal region of TaGα-7A, which is lacking in the TaGα-1B protein, is necessary for its interaction with TaCOLD1. Intriguingly, the C-terminal region of TaGα-7A is also physically associated with the TaDEP1 protein (an atypical Gγ subunit). Significantly, we discover that TaCOLD1 and mTaCOLD1 (M187K) can interfere with the physical association between TaGα-7A and TaDEP1. Together, this study reveals that TaCOLD1 acts as a novel regulator of plant height through interfering with the formation of heterotrimeric G protein complex in bread wheat and is a valuable target for the engineering of wheat plant architecture.
TaCOLD1 defines a new regulator of plant height in bread wheat.
TaCOLD1 是面包小麦中控制株高的一个新的调控因子
阅读:4
作者:Dong Huixue, Yan Suli, Liu Jie, Liu Pan, Sun Jiaqiang
| 期刊: | Plant Biotechnology Journal | 影响因子: | 10.500 |
| 时间: | 2019 | 起止号: | 2019 Mar;17(3):687-699 |
| doi: | 10.1111/pbi.13008 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
