Monosodium Glutamate Treatment Elevates the Immunoreactivity of GFAP and S100β in Caudate Nucleus of the Striatum in Rats.

谷氨酸钠治疗可提高大鼠纹状体尾状核中 GFAP 和 S100β 的免疫反应性

阅读:5
作者:Rycerz Karol, Krawczyk Aleksandra, Jaworska-Adamu Jadwiga, Arciszewski Marcin B
Background Monosodium glutamate (MSG) in its anionic form, glutamate, is one of the main excitatory amino acids. Excess of this neurotransmitter may lead to excitotoxicity affecting neurons and astrocytes responsible for glutamate metabolism in different brain areas of animals. The aim of the study was to investigate the immunoreactivity of glial fibrillary acidic protein (GFAP) and S100β protein in the caudate nucleus of rats under the condition of elevated glutamate levels. METHODS: Fifteen rats were divided into a control group receiving saline and MSG2 and MSG4 groups receiving 2 g/kg b.w. MSG and 4 g/kg b.w. MSG, respectively, for 3 days. An immunohistochemical reaction was conducted on frontal sections containing the caudate nucleus with use of antibodies against GFAP and S100β. RESULTS: Analyses indicated elevated density of astrocytes immunoreactive for the studied proteins in the caudate nucleus in animals receiving MSG. The studied glial cells also demonstrated increased immunostaining intensity for both GFAP and S100β immunoreactive cells especially in the MSG4 group. The number of GFAP-positive processes in astrocytes was similar in all studied groups. CONCLUSIONS: The studies demonstrate a potential response of astrocytes to the effect of MSG administration in the caudate nucleus. It was shown that GFAP- and S100β-positive astrocytes in the caudate nucleus may act differently, suggesting distinct roles of these proteins against glutamate excitotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。