BACKGROUND: Visually guided behaviors such as optomotor and optokinetic responses, phototaxis, and prey capture are crucial for survival in zebrafish and become apparent after just a few days of development. Color vision, which in zebrafish is based on a spatially anisotropic tetrachromatic retina, provides an additional important component of world representation driving fundamental larval behaviors. However, little is known about the central nervous system (CNS) circuitry underlying color vision processing downstream of the retina, and its activity correlates with behavior. Here, we used the transparent larva of zebrafish to image CNS neurons and their activity in response to colored visual stimuli. RESULTS: To investigate the processing of chromatic information in the zebrafish larva brain, we mapped with cellular resolution, spectrally responsive neurons in the larva encephalon and spinal cord. We employed the genetically encoded calcium indicator GCaMP6s and two-photon microscopy to image the neuronal activity while performing visual stimulation with spectrally distinct stimuli at wavelengths matching the absorption peaks of the four zebrafish cone types. We observed the presence of a high number of wavelength-selective neurons not only in the optic tectum, but also in all other regions of the CNS, demonstrating that the circuitry involved in processing spectral information and producing color-selective responses extends to the whole CNS. CONCLUSIONS: Our measurements provide a map of neurons involved in color-driven responses, revealing that spectral information spreads in all regions of the CNS. This suggests the underlying complexity of the circuits involved and opens the way to their detailed future investigation.
Colored visual stimuli evoke spectrally tuned neuronal responses across the central nervous system of zebrafish larvae.
彩色视觉刺激可引起斑马鱼幼体中枢神经系统内光谱调谐的神经元反应
阅读:4
作者:Fornetto Chiara, Tiso Natascia, Pavone Francesco Saverio, Vanzi Francesco
| 期刊: | BMC Biology | 影响因子: | 4.500 |
| 时间: | 2020 | 起止号: | 2020 Nov 27; 18(1):172 |
| doi: | 10.1186/s12915-020-00903-3 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
