Under anaerobic conditions, chlorate is reduced to chlorite, a cytotoxic compound that triggers oxidative stress within bacterial cultures. We previously found that BD Bacto Casamino Acids were contaminated with chlorate. In this study, we investigated whether chlorate contamination is detectable in other commercial culture media. We provide evidence that in addition to different batches of BD Bacto Casamino Acids, several commercial agar powders are contaminated with chlorate. A direct consequence of this contamination is that, during anaerobic growth, Escherichia coli cells activate the expression of msrP, a gene encoding periplasmic methionine sulfoxide reductase, which repairs oxidized protein-bound methionine. We further demonstrate that during aerobic growth, progressive oxygen depletion triggers msrP expression in a subpopulation of cells due to the presence of chlorate. Hence, we propose that chlorate contamination in commercial growth media is a source of phenotypic heterogeneity within bacterial populations. IMPORTANCE Agar is arguably the most utilized solidifying agent for microbiological media. In this study, we show that agar powders from different suppliers, as well as certain batches of BD Bacto Casamino Acids, contain significant levels of chlorate. We demonstrate that this contamination induces the expression of a methionine sulfoxide reductase, suggesting the presence of intracellular oxidative damage. Our results should alert the microbiology community to a pitfall in the cultivation of microorganisms under laboratory conditions.
Chlorate Contamination in Commercial Growth Media as a Source of Phenotypic Heterogeneity within Bacterial Populations.
商业培养基中的氯酸盐污染是细菌群体表型异质性的来源
阅读:11
作者:Vincent Maxence S, Vergnes Alexandra, Ezraty Benjamin
| 期刊: | Microbiology Spectrum | 影响因子: | 3.800 |
| 时间: | 2023 | 起止号: | 2023 Feb 8; 11(2):e0499122 |
| doi: | 10.1128/spectrum.04991-22 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
