Elevation of intracellular Ca2+ in astrocytes can influence cerebral microcirculation and modulate synaptic transmission. Recently, in vivo imaging studies identified delayed, sensory-driven Ca2+ oscillations in cortical astrocytes; however, the long latencies of these Ca2+ signals raises questions in regards to their suitability for a role in short-latency modulation of cerebral microcirculation or rapid astrocyte-to-neuron communication. Here, using in vivo two-photon Ca2+ imaging, we demonstrate that approximately 5% of sulforhodamine 101-labeled astrocytes in the hindlimb area of the mouse primary somatosensory cortex exhibit short-latency (peak amplitude approximately 0.5 s after stimulus onset), contralateral hindlimb-selective sensory-evoked Ca2+ signals that operate on a time scale similar to neuronal activity and correlate with the onset of the hemodynamic response as measured by intrinsic signal imaging. The kinetics of astrocyte Ca2+ transients were similar in rise and decay times to postsynaptic neuronal transients, but decayed more slowly than neuropil Ca2+ transients that presumably reflect presynaptic transients. These in vivo findings suggest that astrocytes can respond to sensory activity in a selective manner and process information on a subsecond time scale, enabling them to potentially form an active partnership with neurons for rapid regulation of microvascular tone and neuron-astrocyte network properties.
Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo.
星形胶质细胞钙信号的快速变化与神经元活动和体内血流动力学反应的发生相关
阅读:8
作者:Winship Ian R, Plaa Nathan, Murphy Timothy H
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2007 | 起止号: | 2007 Jun 6; 27(23):6268-72 |
| doi: | 10.1523/JNEUROSCI.4801-06.2007 | 研究方向: | 信号转导、神经科学、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
