Computational structural optimization enhances IL13Rα2 - B7-H3 tandem CAR T cells to overcome antigen-heterogeneity-mediated tumor escape.

计算结构优化增强了IL13Rα2 - B7-H3串联CAR T细胞,以克服抗原异质性介导的肿瘤逃逸

阅读:4
作者:Meehl Michaela M, Immadisetty Kalyan, Trivedi Vikas D, Glowacki Pawel, Prinzing Brooke, Anido Alejandro Allo, Ibañez-Vega Jorge, Leslie Benjamin J, Babu M Madan, Krenciute Giedre
Chimeric antigen receptor (CAR) T cell therapy is a highly effective treatment for multiple malignancies. However, one limitation is tumor antigen-heterogeneity and downregulation, which allows tumor cells to evade conventional, monospecific CAR T cells. One approach to overcome this tumor escape is by utilizing a tandem CAR recognizing two antigens. However, tandem CAR constructs often require optimization to achieve cell surface expression and function. Herein, we describe our process of designing an IL-13Rα2-B7-H3 tandem CAR. Interestingly, our original tandem CAR failed to express on the cell surface, leading to a systematic evaluation of 24 tandem constructs varying in their scFv positioning, linkers, and specific amino acids. We identified a "trouble region" in the CAR and optimized it using computational approaches, rescuing surface expression and improving function compared with monospecific CAR T cells. Further, the optimized tandem CAR T cells more effectively eliminated tumors than monospecific CAR T cells in vivo. Our study demonstrates the successful application of structure-guided computational strategies to restore surface expression and antitumor efficacy of an IL13Rα2 - B7-H3 tandem CAR. Our study also highlights the necessity of computational methods to guide the design of synthetic proteins, and that these methods can increase CAR T cell efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。