Mutational analysis of the two zinc-binding sites of the Bacillus cereus 569/H/9 metallo-beta-lactamase.

阅读:7
作者:de Seny Dominique, Prosperi-Meys Christelle, Bebrone Carine, Rossolini Gian Maria, Page Michael I, Noel Philippe, Frère Jean-Marie, Galleni Moreno
The metallo-beta-lactamase BcII from Bacillus cereus 569/H/9 possesses a binuclear zinc centre. The mono-zinc form of the enzyme displays an appreciably high activity, although full efficiency is observed for the di-zinc enzyme. In an attempt to assign the involvement of the different zinc ligands in the catalytic properties of BcII, individual substitutions of selected amino acids were generated. With the exception of His(116)-->Ser (H116S), C221A and C221S, the mono- and di-zinc forms of all the other mutants were poorly active. The activity of H116S decreases by a factor of 10 when compared with the wild type. The catalytic efficiency of C221A and C221S was zinc-dependent. The mono-zinc forms of these mutants exhibited a low activity, whereas the catalytic efficiency of their respective di-zinc forms was comparable with that of the wild type. Surprisingly, the zinc contents of the mutants and the wild-type BcII were similar. These data suggest that the affinity of the beta-lactamase for the metal was not affected by the substitution of the ligand. The pH-dependence of the H196S catalytic efficiency indicates that the zinc ions participate in the hydrolysis of the beta-lactam ring by acting as a Lewis acid. The zinc ions activate the catalytic water molecule, but also polarize the carbonyl bond of the beta-lactam ring and stabilize the development of a negative charge on the carbonyl oxygen of the tetrahedral reaction intermediate. Our studies also demonstrate that Asn(233) is not directly involved in the interaction with the substrates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。