Enhanced probabilistic prediction of pavement deterioration using Bayesian neural networks and cuckoo search optimization.

阅读:3
作者:Xiao Feng, Shi Biying, Gao Jie, Chen Huapeng, Yang Di
The predictive performance of probabilistic pavement condition deterioration is critical for effective maintenance and rehabilitation decisions. Currently, numerous improved models exist, but few rely on probabilistic models to improve pavement deterioration prediction. Therefore, this study proposed an improved probabilistic model for pavement deterioration prediction based on the coupling of Bayesian neural network (BNN) and cuckoo search (CS) algorithm. The model prediction performance is evaluated against two metrics: determination coefficient (R(2)) and standard deviation (stability). Finally, based on the data from the pavement management system in Shanxi Province, it was verified that the CS-BNN model outperforms the genetic algorithm-BNN, particle swarm optimization-BNN, and BNN models in terms of the two metrics. Sensitivity analysis further confirms the robustness of the CS-BNN model. The findings indicate that the CS-BNN model provides more reliable predictions with lower uncertainty, aiding road engineers in optimizing maintenance schedules and costs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。