Reversing inflammatory microenvironment by a single intra-articular injection of multi-stimulus responsive lipogel to relieve rheumatoid arthritis and promote joint repair.

阅读:5
作者:Tao Jun, Yang Peng, Gao Mingying, Zhang Fan, Wu Yongzhong, Jiang Yan, Ning Yunxuan, Li Zhenglin, Ai Fanrong
Rheumatoid arthritis (RA) is a common chronic disease dominated by inflammatory synovitis, which is characterized with hyperplastic synovium, up-regulated matrix metalloproteinase (MMP) expression, hypoxic joint cavity and excessive reactive oxygen species (ROS) accumulation. Such local adverse microenvironment in RA joints further exacerbates the infiltration of synovial inflammatory cells, especially M1-type macrophages. Regulating intra-articular pathological conditions, eliminating excess M1 macrophages or converting them to an anti-inflammatory M2 phenotype may break the vicious progression circle. Herein, we develop a multi-stimulus responsive lipogel as effective platform to relieve RA symptoms and promote articular cartilage recovery via reversing its inflammatory microenvironment. The injectable lipogel is fabricated by loading polydopamine nanoparticles and methotrexate into a thermosensitive gel, and intra-articularly injected to form the therapeutic depot (PDA/MTX@TSG) in situ. The gel degrades slowly under esterase hydrolysis, and maintains sustained drug release in physiological conditions. Meanwhile, it can 1) induce a reversible gel-sol phase transition upon mild photothermal treatment (external NIR light control), and 2) specifically respond to MMP-rich RA microenvironment (internal enzymatic hydrolysis effect). Such stimulus-responsive system can deliver therapeutic components in a controllable manner, and significantly reverse adverse inflammatory microenvironment of RA joints through ROS eliminating, hypoxia alleviating, and M1-M2 macrophage polarization effects. Animal experiments indicate that observable RA relief and joint repair are realized after a single lipogel injection combined with NIR irradiation. Our study highlights the importance of altering local RA microenvironment via anti-inflammatory macrophage polarization, and therefore presents a potent therapeutic strategy for RA treatment in clinical intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。