A Novel YOLOv10-Based Algorithm for Accurate Steel Surface Defect Detection.

阅读:13
作者:Liao Liefa, Song Chao, Wu Shouluan, Fu Jianglong
To address challenges like manual processes, complicated detection methods, high false alarm rates, and frequent errors in identifying defects on steel surfaces, this research presents an innovative detection system, YOLOv10n-SFDC. The study focuses on the complex dependencies between parameters used for defect detection, particularly the interplay between feature extraction, fusion, and bounding box regression, which often leads to inefficiencies in traditional methods. YOLOv10n-SFDC incorporates advanced elements such as the DualConv module, SlimFusionCSP module, and Shape-IoU loss function, improving feature extraction, fusion, and bounding box regression to enhance accuracy. Testing on the NEU-DET dataset shows that YOLOv10n-SFDC achieves a mean average precision (mAP) of 85.5% at an Intersection over Union (IoU) threshold of 0.5, a 6.3 percentage point improvement over the baseline YOLOv10. The system uses only 2.67 million parameters, demonstrating efficiency. It excels in identifying complex defects like 'rolled in scale' and 'inclusion'. Compared to SSD and Fast R-CNN, YOLOv10n-SFDC outperforms these models in accuracy while maintaining a lightweight architecture. This system excels in automated inspection for industrial environments, offering rapid, precise defect detection. YOLOv10n-SFDC emerges as a reliable solution for the continuous monitoring and quality assurance of steel surfaces, improving the reliability and efficiency of steel manufacturing processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。