Stress during pregnancy is associated with metabolic dysfunction in the adult offspring in human and other animals. However, little is known about the metabolic effects of pregnancy stress on the mothers and fetuses during pregnancy itself. This study aimed to determine the consequences of the common experimental procedures of injection and single housing in pregnant rats on fetal and maternal hepatic glucogenic capacities. On day (D) 20 of pregnancy, feto-placental weights and the glycogen content and activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) of fetal and maternal liver were measured in rats pair or single housed from D1 with or without saline injection from D15 to D19. Housing and saline injection both affected hepatic glucogenic capacity. In maternal liver, saline injection but not housing reduced glycogen content and raised G6Pase activity, whereas housing but not treatment increased PEPCK activity. In fetuses, housing and injection interacted in regulating PEPCK activity and reducing hepatic glycogen content and placental weight. Body weight was decreased and hepatic G6Pase increased by injection but not housing in the fetuses. Single-housed dams ate less than those pair-housed near term while saline injection elevated maternal plasma corticosterone concentrations. Thus, single housing and saline injection are both stresses during rat pregnancy that alter feto-placental weight and hepatic glucogenic capacity of the fetuses and dams near term. Routine experimental procedures per se may, therefore, have consequences for offspring hepatic phenotype as well as modifying the outcomes of dietary and other environmental challenges during pregnancy.
Effects of stress during pregnancy on hepatic glucogenic capacity in rat dams and their fetuses.
阅读:5
作者:Franko Kathryn L, Forhead Alison J, Fowden Abigail L
| 期刊: | Physiological Reports | 影响因子: | 1.900 |
| 时间: | 2017 | 起止号: | 2017 Jun |
| doi: | 10.14814/phy2.13293 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
