Proliferation of Human Cervical Cancer Cells Responds to Surface Properties of Bicomponent Polymer Coatings.

阅读:4
作者:Rosqvist Emil, Niemelä Erik, Liang Shujun, Eriksson John E, Wang Xiaoju, Peltonen Jouko
The proliferation of human cervical cancer (Hela) cells was investigated on a series of nanostructured polymer latex surfaces. The physico-chemical properties of the surfaces, composed of mixtures of polystyrene and acrylonitrile butadiene styrene dispersions, were precisely controlled in the nanoscale range by adjusting the mixing ratio of the components and thermal treatment. In addition, the proliferation response of HeLa cells was compared to that of human dermal fibroblast (HDF) cells. A low dispersive surface energy and peak or valley dominance (S(pk)/S(vk)) were observed to increase the proliferation yield of the Hela cells. The HDF cells were less influenced by the surface chemistry and showed improved proliferation on surfaces without dominant peak or valley features (S(pk) and S(vk)). The observed changes in Hela cell behaviour underscored the critical role of material surface properties in influencing cellular responses, with more significant accumulation of nuclear patterning of filamentous actin (F-actin) on stiffer and smoother surfaces (e.g., borosilicate glass) due to higher mechanical stress. A more dynamic reorganisation of the cytoskeleton was observed for cells grown on polymer surfaces with moderate roughness and surface energy. These results emphasise the importance of characterising and tuning surface properties to accommodate the specific behaviours of different cell types.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。