Utilizing naturally derived biopolymers in the macromolecular design of thermoresponsive polymers offers sustainable and biodegradable smart building blocks to functional materials. Here, a novel graft polymer of xylan-g-allyl glycidyl ether (xylan-g-AGE) that is thermoresponsive to self-assemble and photoreactive in photopolymerization is reported. This research highlights an innovative use of the debranched wood xylan, a chemically engineered linear polysaccharide of β-1,4-linked xylose, as the backbone in grafting polymer, which allows a greater degree of spatial coordination for sidechains than the analogous cellulose. Induced by the reformation of H-bonds and hydrophobic effect, xylan-g-AGE transits from solvated coil chain to self-assembled mesoglobules upon the temperature change above its lower critical solution temperature (LCST). When xylan-g-AGE is used in photoresins to fabricate hydrogels with good geometric fidelity via DLP 3D printing, solvated xylan-g-AGE stiffens the polyethylene glycol (PEG) hydrogel strongly, due to higher crosslink density of available AGE moiety and faster crosslinking rate, while self-assembled xylan-g-AGE toughens the PEG hydrogel better, attributed to the strategy of "dual chemically independent domains" that smartly combines tough domain of PEG and soft domain of self-assembled xylan-g-AGE. Conductive hydrogel is fabricated by incorporating 2D MXene sheets into this hydrogel matrix in DLP printing, which demonstrates superior performance as wearable strain sensors.
"Grafting-to" Polymers of Xylan-g-allyl Glycidyl Ether Toughen PEG Hydrogel via Microphase Separation: Thermoresponsive and Photoreactive Molecular Assembly in DLP 3D Printing.
阅读:5
作者:Zhang Yidong, Wang Qingbo, Deng Wangfang, Hazer Silva, Luukkonen Axel, Pranovich Andrey, Salo-Ahen Outi M H, Ãsterbacka Ronald, Xu Chunlin, Wang Xiaoju
| 期刊: | Small | 影响因子: | 12.100 |
| 时间: | 2025 | 起止号: | 2025 Aug;21(34):e2502129 |
| doi: | 10.1002/smll.202502129 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
