This study presents the development and characterization of a novel electronic nose system based on customized surface acoustic wave (SAW) sensors. The system includes four sensors, customized with different custom polymer coatings, in order to detect volatile organic compounds (VOCs). The main innovation lies in the design of a robust and versatile switching electronics system that allows for the integration of the SAW sensors into portable systems, as well as interoperability with other gas sensor technologies. The system includes a modular architecture that allows multiple sensor arrays to be combined to improve the selectivity and discrimination of complex gas mixtures. To verify the proper performance of the system and the detection capability of the manufactured sensors, experimental laboratory tests have been carried out. Specifically, ethanol and acetone measurements up to a 2000 ppm concentration have been performed. These preliminary experimental results demonstrate the capability of the SAW sensors with different response patterns across the sensor array. In particular, the sensor made with the polyvinyl acetate polymer exhibits high sensitivity to both VOCs.
A Versatile SAW Sensor-Based Modular and Portable Platform for a Multi-Sensor Device.
阅读:4
作者:López-Luna Ãngel, Arroyo Patricia, Matatagui Daniel, Sánchez-Vicente Carlos, Lozano Jesús
| 期刊: | Micromachines | 影响因子: | 3.000 |
| 时间: | 2025 | 起止号: | 2025 Jan 31; 16(2):170 |
| doi: | 10.3390/mi16020170 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
