Polysaccharide-based hydrogels have been utilized as flexible strain sensors because of their renewability, biocompatibility, and biodegradability. However, their widespread application is hindered by the complexity of their manufacturing processes and the inevitable degradation of their mechanical properties with repeated use. The introduction of reversible bond chemistry offers the potential to impart self-healing properties to hydrogels, extending their functional lifespan. In this study, we prepared a starch-based conductive hydrogel (starch/poly(vinyl alcohol) (PVA)/cellulose nanocrystals (CNCs)) via a straightforward method using borax as a cross-linking agent. The hydrogel demonstrated improved strength and self-healing property because of the addition of CNCs, which formed dual reversible cross-links with starch and PVA via hydrogen and borate ester bonds. Additionally, the sodium ions (Na(+)) and borate ions (B(OH)(4)(-)) within the network enhanced the electrical conductivity and strain sensitivity of the hydrogel. The resulting hydrogel demonstrated potential for application as a wearable sensor capable of monitoring a range of human movements, sensing handwriting, and enabling Morse code communication. Notably, the hydrogel could be easily remolded at room temperature after being sectioned, highlighting its practical applicability. This work expands the scope of the use of starch-based hydrogels in sustainable wearable sensor technologies.
Self-Healing, Remoldable, and Conductive Starch-Based Dual Reversible Cross-Linking Hydrogels for Strain Sensors.
阅读:4
作者:Lu Kai, He Xiaolong, Burhani Dian, Hu Jintao, Rudolf Petra, Maniar Dina, Folkersma Rudy, Voet Vincent S D, Loos Katja
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2025 | 起止号: | 2025 Jul 2; 17(26):38438-38450 |
| doi: | 10.1021/acsami.5c05168 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
