BACKGROUND: Oxidative stress is a key feature in the pathogenesis of several neurological disorders. Following oxidative stress stimuli a wide range of pathways are activated and contribute to cellular death. The mechanism that couples c-Jun N-terminal kinase (JNK) signaling, a key pathway in stress conditions, to the small ubiquitin-related modifier (SUMO), an emerging protein in the field, is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: With this study we investigated if SUMOylation participates in the regulation of JNK activation as well as cellular death in a model of H(2)O(2) induced-oxidative stress. Our data show that H(2)O(2) modulates JNK activation and induces cellular death in neuroblastoma SH-SY5Y cells. Inhibition of JNK's action with the D-JNKI1 peptide rescued cells from death. Following H(2)O(2), SUMO-1 over-expression increased phosphorylation of JNK and exacerbated cell death, although only in conditions of mild oxidative stress. Furthermore inhibition of SUMOylation, following transfection with SENP1, interfered with JNK activation and rescued cells from H(2)O(2) induced death. Importantly, in our model, direct interaction between these proteins can occur. CONCLUSIONS/SIGNIFICANCE: Taken together our results show that SUMOylation may significantly contribute to modulation of JNK activation and contribute to cell death in oxidative stress conditions.
Crosstalk between JNK and SUMO signaling pathways: deSUMOylation is protective against H2O2-induced cell injury.
阅读:3
作者:Feligioni Marco, Brambilla Elisa, Camassa Agata, Sclip Alessandra, Arnaboldi Andrea, Morelli Federica, Antoniou Xanthi, Borsello Tiziana
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2011 | 起止号: | 2011;6(12):e28185 |
| doi: | 10.1371/journal.pone.0028185 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
