Ultrasound imaging is widely used in early pregnancy to screen for fetal brain anomalies. However, the accuracy of diagnosis can be influenced by various factors, including the sonographer's experience and environmental conditions. To address these limitations, advanced methods are needed to enhance the efficiency and reliability of fetal anomaly screening. In this study, we propose a novel approach based on a Fetal Brain Structures Detection Network (FBStrNet) for identifying key anatomical structures in fetal brain ultrasound images. Specifically, FBStrNet builds on the YOLOv5 baseline model, incorporating a lightweight backbone to reduce model parameters, replacing the loss function, and utilizing a decoupled detection header to improve accuracy. Additionally, our method integrates prior clinical knowledge to minimize false detection rates. Experimental results demonstrate that FBStrNet outperforms state-of-the-art methods, achieving real-time detection of fetal brain anatomical structures with an inference time of just 11.5 ms. This capability enables sonographers to efficiently visualize critical anatomical features, thereby improving diagnostic precision and streamlining clinical workflows.
FBStrNet: Automatic Fetal Brain Structure Detection in Early Pregnancy Ultrasound Images.
阅读:4
作者:Lin Yirong, Liu Shunlan, Liu Zhonghua, Fan Yuling, Liu Peizhong, Guo Xu
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Aug 13; 25(16):5034 |
| doi: | 10.3390/s25165034 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
