Wounding and Phospholipase C Inhibition: Evaluation of the Alkaloid Profiling in Opium Poppy.

阅读:5
作者:Hans Barbora, Balažová Ema, Dokupilová Svetlana, MikuÅ¡ Peter, Balažová Andrea, Kubíková Renáta, Obložinský Marek
Wounding triggers complex secondary metabolic pathways in plants, including benzylisoquinoline alkaloid (BIA) biosynthesis in opium poppy (Papaver somniferum L.). This study explores transcriptional and metabolic responses to wounding and methyl jasmonate (MeJA) treatment, focusing on BIA biosynthesis and regulatory mechanisms. Real-time expression analysis revealed significant up-regulation of transcripts in the (S)-reticuline and papaverine biosynthetic pathway, while the noscapine pathway was suppressed. The morphinan pathway also showed transcriptional activation, except in the case of codeinone reductase (COR), which remained unresponsive to both wounding and MeJA, suggesting a partially uncoupled mechanism. Metabolite profiling using HPLC-MS demonstrated a rapid accumulation of morphine post wounding, further supporting the hypothesis of independent regulatory control over COR. The role of phospholipase C (PLC) in modulating wound-induced BIA accumulation was investigated, revealing that PLC inhibition reduced morphine production and suppressed COR expression. These findings highlight the importance of phospholipid-dependent signalling in activating morphine biosynthesis, potentially at the expense of other BIAs. This study provides insights into plant stress responses and suggests strategies for enhancing BIA production through targeted interventions, offering potential applications in improving alkaloid yield.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。