The frequency shifts of donor stretching vibration in X-H···Y (X = C, N, O; Y = N, O) hydrogen-bonded complexes of phenylacetylene, indole, and phenol are linearly correlated with the electrostatic component of the interaction energy. This linear correlation suggests that the electrostatic component, which is the first-order perturbative correction to the stabilization energy, is essentially localized on the X-H group. The linear correlation suggests that the electrostatic tuning rate, which is a measure of the X-H oscillator to undergo shifts upon hydrogen bonding per unit increase in the electrostatic component of the stabilization energy, was found to be in the order of O-H > N-H > C-H. Interestingly, for each of the donor groups, viz., C-H, N-H, and O-H, the vibrational frequency shifts were inversely correlated to the dipole moment of the acceptor separately, which is counterintuitive vis-à -vis the electrostatic component. This implies that extrapolation to zero dipole moment of the acceptor will yield very large shifts in the hydrogen-bonded X-H stretching frequencies. The trends in the variation of the dispersion and exchange-repulsion components and the total interaction energy vis-à -vis frequency shifts of donor stretching vibration are similar for hydrogen-bonded complexes of phenylacetylene, indole, and phenol. Furthermore, it was observed that the vibrational frequency shifts of all of the complexes are linearly correlated with the charge transfer from the filled orbital of the hydrogen acceptor to the vacant antibonding (Ï*) orbital of the X-H donor group on the basis of natural bonding orbital calculations.
Electrostatics and Dispersion in X-H···Y (X = C, N, O; Y = N, O) Hydrogen Bonds and Their Role in X-H Vibrational Frequency Shifts.
阅读:7
作者:Sen Saumik, Patwari G Naresh
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2018 | 起止号: | 2018 Dec 27; 3(12):18518-18527 |
| doi: | 10.1021/acsomega.8b01802 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
