BACKGROUND: There is a continuous research in the area of biomimetic coatings on the titanium (Ti) implant surfaces for improved survival and long-term successful outcomes in the field of dentistry and orthopedics. In-vitro approaches are ideal systems for studying cell-material interactions without complexity and interference observed in in-vivo models. PURPOSE: The present study was undertaken to evaluate the osteoblast characteristics and function on Ti substrates coated with the novel composite coating of ceramic apatite-wollastonite (AW) and polymer chitosan. MATERIALS AND METHODS: Ti substrate coated with composite AW-Chitosan was synthesized, using electrophoretic deposition. MG-63 cells were seeded onto the coated substrates and cellular morphology and growth was assessed using Scanning Electron Microscopy (SEM) and Laser Scanning Microscopy (LSM). Osteocalcin expression of the seeded cells was assessed by FITC tagging and LSM analysis. Alizarin Red S staining and Confocal LSM (CSLM) analysis was used to study the in-vitro mineralization on the titanium samples. RESULTS: The AW-Chitosan coating on Ti samples by electrophoretic deposition exerted significant positive influence on cell proliferation, growth and mineralization as compared to uncoated titanium samples. Scanning electron microscopy and laser confocal microscopy experiments revealed that the coating was non-toxic to cells, enhanced adhesion and proliferation of MG-63 cells. Increased functional activity was observed by increased production of bone-specific protein osteocalcin and mineralized calcium through day 7 and 14. CONCLUSIONS: The present study underscores that optimal inorganic-organic phase nanocomposite crack-free coating created on Ti by simple, cost-effective electrophoretic deposition technique may have osteoconductive potential and may have wide application in the field of implantology. Graphical abstract.
Improved osteoblast function on titanium implant surfaces coated with nanocomposite Apatite-Wollastonite-Chitosan- an experimental in-vitro study.
阅读:5
作者:Mukherjee Shayanti, Sharma Smriti, Soni Vivek, Joshi Amruta, Gaikwad Amit, Bellare Jayesh, Kode Jyoti
| 期刊: | Journal of Materials Science-Materials in Medicine | 影响因子: | 4.500 |
| 时间: | 2022 | 起止号: | 2022 Feb 21; 33(3):25 |
| doi: | 10.1007/s10856-022-06651-w | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
