Fueled by the rapid development of machine learning (ML) and greater access to cloud computing and graphics processing units, various deep learning based models have been proposed for improving performance of ultrasonic guided wave structural health monitoring (GW-SHM) systems, especially to counter complexity and heterogeneity in data due to varying environmental factors (e.g., temperature) and types of damages. Such models typically comprise of millions of trainable parameters, and therefore add to cost of deployment due to requirements of cloud connectivity and processing, thus limiting the scale of deployment of GW-SHM. In this work, we propose an alternative solution that leverages TinyML framework for development of light-weight ML models that could be directly deployed on embedded edge devices. The utility of our solution is illustrated by presenting an unsupervised learning framework for damage detection in honeycomb composite sandwich structure with disbond and delamination type of damages, validated using data generated by finite element simulations and experiments performed at various temperatures in the range 0-90 °C. We demonstrate a fully-integrated solution using a Xilinx Artix-7 FPGA for data acquisition and control, and edge-inference of damage. Despite the limited number of features, the lightweight model shows reasonably high accuracy, thereby enabling detection of small size defects with improved sensitivity on an edge device for online GW-SHM.
Unsupervised deep learning framework for temperature-compensated damage assessment using ultrasonic guided waves on edge device.
阅读:5
作者:Kashyap Pankhi, Shivgan Kajal, Patil Sheetal, Raja B Ramana, Mahajan Sagar, Banerjee Sauvik, Tallur Siddharth
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Feb 14; 14(1):3751 |
| doi: | 10.1038/s41598-024-54418-w | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
