Structural Design and Kinematic Modeling of Highly Biomimetic Flapping-Wing Aircraft with Perching Functionality.

阅读:5
作者:Pu Wenyang, Shen Qiang, Yang Yuhang, Lu Yiming, Yan Yaojie
Birds use their claws to perch on branches, which helps them to recover energy and observe their surroundings; however, most biomimetic flapping-wing aircraft can only fly, not perch. This study was conducted on the basis of bionic principles to replicate birds' claw and wing movements in order to design a highly biomimetic flapping-wing aircraft capable of perching. First, a posture conversion module with a multi-motor hemispherical gear structure allows the aircraft to flap, twist, swing, and transition between its folded and unfolded states. The perching module, based on helical motion, converts the motor's rotational movement into axial movement to extend and retract the claws, enabling the aircraft to perch. The head and tail motion module has a dual motor that enables the aircraft's head and tail to move as flexibly as a bird's. Kinematic models of the main functional modules are established and verified for accuracy. Functional experiments on the prototype show that it can perform all perching actions, demonstrating multi-modal motion capabilities and providing a foundation upon which to develop dynamics models and control methods for highly biomimetic flapping-wing aircraft with perching functionality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。