CNN-Based Hand Grasping Prediction and Control via Postural Synergy Basis Extraction.

阅读:5
作者:Liu Quan, Li Mengnan, Yin Chaoyue, Qian Guoming, Meng Wei, Ai Qingsong, Hu Jiwei
The prediction of hand grasping and control of a robotic manipulator for hand activity training is of great significance to assist stroke patients to recover their biomechanical functions. However, the human hand and the figure joints have multiple degrees of freedom; therefore, it is complex to process and analyze all the collected data in hand modeling. To simplify the description of grasping activities, it is necessary to extract and decompose the principal components of hand actions. In this paper, the relationships among hand grasping actions are explored by extracting the postural synergy basis of hand motions, aiming to simplify hand grasping actions and reduce the data dimensions for robot control. A convolutional neural network (CNN)-based hand activity prediction method is proposed, which utilizes motion data to estimate hand grasping actions. The prediction results were then used to control a stimulated robotic model according to the extracted postural synergy basis. The prediction accuracy of the proposed method for the selected hand motions could reach up to 94% and the robotic model could be operated naturally based on patient's movement intention, so as to complete grasping tasks and achieve active rehabilitation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。