Detection of sleep apnea from single-channel electroencephalogram (EEG) using an explainable convolutional neural network (CNN).

阅读:10
作者:Barnes Lachlan D, Lee Kevin, Kempa-Liehr Andreas W, Hallum Luke E
Sleep apnea (SA) is a common disorder involving the cessation of breathing during sleep. It can cause daytime hypersomnia, accidents, and, if allowed to progress, serious, chronic conditions. Continuous positive airway pressure is an effective SA treatment. However, long waitlists impede timely diagnosis; overnight sleep studies involve trained technicians scoring a polysomnograph, which comprises multiple physiological signals including multi-channel electroencephalography (EEG). Therefore, it is important to develop simplified and automated approaches to detect SA. In the present study, we have developed an explainable convolutional neural network (CNN) to detect SA events from single-channel EEG recordings which generalizes across subjects. The network architecture consisted of three convolutional layers. We tuned hyperparameters using the Hyperband algorithm, optimized parameters using Adam, and quantified network performance with subjectwise 10-fold cross-validation. Our CNN performed with an accuracy of 69.9%, and a Matthews correlation coefficient (MCC) of 0.38. To explain the mechanisms of our trained network, we used critical-band masking (CBM): after training, we added bandlimited noise to test recordings; we parametrically varied the noise band center frequency and noise intensity, quantifying the deleterious effect on performance. We reconciled the effects of CBM with lesioning, wherein we zeroed the trained network's 1st-layer filter kernels in turn, quantifying the deleterious effect on performance. These analyses indicated that the network learned frequency-band information consistent with known SA biomarkers, specifically, delta and beta band activity. Our results indicate single-channel EEG may have clinical potential for SA diagnosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。