Systematically and comprehensively enhancing road traffic safety using artificial intelligence (AI) is of paramount importance, and it is gradually becoming a crucial framework in smart cities. Within this context of heightened attention, we propose to utilize machine learning (ML) to optimize and ameliorate pedestrian crossing predictions in intelligent transportation systems, where the crossing process is vital to pedestrian crossing behavior. Compared with traditional analytical models, the application of OpenCV image recognition and machine learning methods can analyze the mechanisms of pedestrian crossing behaviors with greater accuracy, thereby more precisely judging and simulating pedestrian violations in crossing. Authentic pedestrian crossing behavior data were extracted from signalized intersection scenarios in Chinese cities, and several machine learning models, including decision trees, multilayer perceptrons, Bayesian algorithms, and support vector machines, were trained and tested. In comparing the various models, the results indicate that the support vector machine (SVM) model exhibited optimal accuracy in predicting pedestrian crossing probabilities and speeds, and it can be applied in pedestrian crossing prediction and traffic simulation systems in intelligent transportation.
Research on Pedestrian Crossing Decision Models and Predictions Based on Machine Learning.
阅读:5
作者:Cai Jun, Wang Mengjia, Wu Yishuang
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2024 | 起止号: | 2024 Jan 1; 24(1):258 |
| doi: | 10.3390/s24010258 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
