It has been reported that Arabidopsis chloroplast accD transcripts undergo RNA editing and that loss of accD-C794 RNA editing does not affect plant growth under normal conditions. To date, the exact biological role of accD-C794 editing has remained elusive. Here, we reveal an unexpected role for accD-C794 editing in response to heat stress. Loss of accD-C794 editing results in a yellow and dwarf phenotype with decreased chloroplast gene expression under heat stress, and artificial improvement of C794-edited accD gene expression enhances heat tolerance in Arabidopsis. These data suggest that accD-C794 editing confers heat tolerance in planta. We also found that treatment with the product of acetyl coenzyme A carboxylase (ACCase) could allay mutant phenotypic characteristics and showed that a mutation in the CAC3 gene for the α-subunit of ACCase was associated with dwarfism under heat stress. These observations indicate that defective accD-C794 editing may be intrinsic to reduced ACCase activity, thereby contributing to heat sensitivity. ACCase catalyzes the committed step of de novo fatty acid (FA) biosynthesis. FA content analysis revealed that unsaturated oleic (C18:1) and linoleic acids (C18:2) were low in the accD-C794 editing-defective mutant but high in the C794-edited accD-overexpressing plants compared with the wild type. Supplying exogenous C18:1 and C18:2 could rescue the mutant phenotype, suggesting that these FAs play an essential role in tolerance to heat stress. Transmission electron microscopy observations showed that heat stress seriously affected the membrane architecture in accD editing-defective mutants but not in accD-overexpressing plants. These results provide the first evidence that accD-C794 editing regulates FA biosynthesis for maintenance of membrane structural homeostasis under heat stress.
The PPR protein RARE1-mediated editing of chloroplast accD transcripts is required for fatty acid biosynthesis and heat tolerance in Arabidopsis.
阅读:3
作者:Huang Chao, Liu Dan, Li Zi-Ang, Molloy David P, Luo Zhou-Fei, Su Yi, Li Hai-Ou, Liu Qing, Wang Ruo-Zhong, Xiao Lang-Tao
| 期刊: | Plant Communications | 影响因子: | 11.600 |
| 时间: | 2023 | 起止号: | 2023 Jan 9; 4(1):100461 |
| doi: | 10.1016/j.xplc.2022.100461 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
