In the autonomous navigation of mobile robots, precise positioning is crucial. In forest environments with weak satellite signals or in sites disturbed by complex environments, satellite positioning accuracy has difficulty in meeting the requirements of autonomous navigation positioning accuracy for robots. This article proposes a vision SLAM/UWB tightly coupled localization method and designs a UWB non-line-of-sight error identification method using the displacement increment of the visual odometer. It utilizes the displacement increment of visual output and UWB ranging information as measurement values and applies the extended Kalman filtering algorithm for data fusion. This study utilized the constructed experimental platform to collect images and ultra-wideband ranging data in outdoor environments and experimentally validated the combined positioning method. The experimental results show that the algorithm outperforms individual UWB or loosely coupled combination positioning methods in terms of positioning accuracy. It effectively eliminates non-line-of-sight errors in UWB, improving the accuracy and stability of the combined positioning system.
Research on a Visual/Ultra-Wideband Tightly Coupled Fusion Localization Algorithm.
阅读:4
作者:Jiang Pin, Hu Chen, Wang Tingting, Lv Ke, Guo Tingfeng, Jiang Jinxuan, Hu Wenwu
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2024 | 起止号: | 2024 Mar 6; 24(5):1710 |
| doi: | 10.3390/s24051710 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
