Optimized multi-stage network with multi-dimensional spatiotemporal interactions for septal and apical hypertrophic cardiomyopathy classification using 12-lead ECGs.

阅读:7
作者:Yu Qi, Ning Hongxia, Yang Jinzhu, Qu Mingjun, Qi Yiqiu, Cao Peng, Li Honghe, Li Guangyuan, Wang Yonghuai
ABSTRACT: Hypertrophic cardiomyopathy (HCM) is a common hereditary heart disease and is the leading cause of sudden cardiac death in adolescents. Septal hypertrophy (SH) and apical hypertrophy (AH) are two common types. The former is characterized by abnormal septal myocardial thickening and the latter by left ventricular apical hypertrophy, both of which significantly increase the risk of heart failure, arrhythmias, and other serious complications. Identifying hypertrophic sites in HCM patients using 12-lead electrocardiography (ECG) is crucial for early diagnosis, staging, and prognosis. However, most deep learning methods rely on 1D one-dimensional ECG signal detection, or 2D two-dimensional ECG image or spectrogram recognition, which may result in the loss of spatial or temporal information, thus limiting diagnostic accuracy. Therefore, an optimized multi-stage network with multi-dimensional spatiotemporal interactions (Ms-MdST) is proposed for detecting AH and SH in HCM. The optimized Ms-MdST model combines the advantages of different dimensional convolutions to capture the spatiotemporal characteristics of ECG and consists of a 1D convolution branch for overall temporal features and a 2D convolution branch for similar spatial features across multiple leads. Moreover, a global-local interactive attention mechanism (GLIA) and a multi-loss joint optimization strategy are employed to facilitate multi-stage multi-scale feature fusion. Experimental results show that Ms-MdST achieves F1-scores of 0.9672, 0.7250, and 0.8009 in the CONTROL, SH, and AH groups, respectively, demonstrating its superiority compared to existing ECG classification methods. In addition, the proposed model is interpretable and can be further extended to clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。