An Improved Segformer for Semantic Segmentation of UAV-Based Mine Restoration Scenes.

阅读:3
作者:Wang Feng, Zhang Lizhuo, Jiang Tao, Li Zhuqi, Wu Wangyu, Kuang Yingchun
Mine ecological restoration is a critical process for promoting the sustainable development of resource-dependent regions, yet existing monitoring methods remain limited in accuracy and adaptability. To address challenges such as small-object recognition, insufficient multi-scale feature fusion, and blurred boundaries in UAV-based remote sensing imagery, this paper proposes an enhanced semantic segmentation model based on Segformer. Specifically, a multi-scale feature-enhanced feature pyramid network (MSFE-FPN) is introduced between the encoder and decoder to strengthen cross-level feature interaction. Additionally, a selective feature aggregation pyramid pooling module (SFA-PPM) is integrated into the deepest feature layer to improve global semantic perception, while an efficient local attention (ELA) module is embedded into lateral connections to enhance sensitivity to edge structures and small-scale targets. A high-resolution UAV image dataset, named the HUNAN Mine UAV Dataset (HNMUD), is constructed to evaluate model performance, and further validation is conducted on the public Aeroscapes dataset. Experimental results demonstrated that the proposed method exhibited strong performance in terms of segmentation accuracy and generalization ability, effectively supporting the image analysis needs of mine restoration scenes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。