For any 2 < p < â we prove that there exists an initial velocity field vâ â L2 with vorticity Ïâ â L1ââ©âLp for which there are infinitely many bounded admissible solutions v â CtL2 to the 2D Euler equation. This shows sharpness of the weak-strong uniqueness principle, as well as sharpness of Yudovich's proof of uniqueness in the class of bounded admissible solutions. The initial data are truncated power-law vortices. The construction is based on finding a suitable self-similar subsolution and then applying the convex integration method. In addition, we extend it for 1 < p < â and show that the energy dissipation rate of the subsolution vanishes at t = 0 if and only if p â¥Â 3/2 , which is the Onsager critical exponent in terms of Lp control on vorticity in 2D.
Non-uniqueness of Admissible Solutions for the 2D Euler Equation with Lp Vortex Data.
阅读:5
作者:Mengual, Francisco
| 期刊: | Communications in Mathematical Physics | 影响因子: | 2.600 |
| 时间: | 2024 | 起止号: | 2024;405(9):207 |
| doi: | 10.1007/s00220-024-05065-9 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
