Glycosylation profiling is an effective methodology for achieving a comprehensive understanding of glycoproteins and their alterations in a multitude of pathological conditions. However, in comparison to N-glycosylation, O-glycosylation presents significant challenges in terms of both qualitative and quantitative mass spectrometric analyses. A recently developed oxidative release protocol enables the selective formation of O-glycans containing a carboxyl group derived from the amino acid residue. In this study, 3-nitrophenylhydrazine was used to derivatize the common carboxyl group in a mild hydrophilic solution. Derivatization resulted in the generation of a series of report ions for serine, threonine, sialic acid, and O-acetylated sialic acid residues, thereby facilitating the identification of O-glycans and their attached amino acid residues, as well as the determination of the number of O-acetyl groups. A total of 65 O-glycans can be identified from bovine mucin. Furthermore, the analytical strategy revealed that O-acetylated N-acetylneuraminic acid (Neu5Ac)-containing O-glycans from horse serum exhibited distinctive fragmentation patterns in comparison to those from bovine mucin. Additionally, the presence of deaminoneuraminic acid (KDN)-containing O-glycans was successfully confirmed in fish intestinal tissue. These findings suggest that this method provides an economical and potentially valuable tool for large-scale O-glycosylation studies in complex biological samples.
Analysis of O-Glycans by Oxidative Release Combined with 3-Nitrophenylhydrazine Derivatization.
阅读:14
作者:Min Zhenghu, Wang Xingdan, Yang Xiaoqiu, Zhang Qiwei, Zheng Qi
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 Apr 3; 10(14):14403-14412 |
| doi: | 10.1021/acsomega.5c00652 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
