Uncovering Abnormal Behavior Patterns from Mobility Trajectories.

阅读:5
作者:Wu Hao, Tang Xuehua, Wang Zhongyuan, Wang Nanxi
Using personal trajectory information to grasp the spatiotemporal laws of dangerous activities to curb the occurrence of criminal acts is a new opportunity and method for security prevention and control. This paper proposes a novel method to discover abnormal behaviors and judge abnormal behavior patterns using mobility trajectory data. Abnormal behavior trajectory refers to the behavior trajectory whose temporal and spatial characteristics are different from normal behavior, and it is an important clue to discover dangerous behavior. Abnormal patterns are the behavior patterns summarized based on the regular characteristics of criminals' activities, including wandering, scouting, random walk, and trailing. This paper examines the abnormal behavior patterns based on mobility trajectories. A Long Short-Term Memory Network (LSTM)-based method is used to extract personal trajectory features, and the K-means clustering method is applied to extract abnormal trajectories from the trajectory dataset. Based on the characteristics of different abnormal behaviors, the spatio-temporal feature matching method is used to identify the abnormal patterns based on the filtered abnormal trajectories. Experimental results showed that the trajectory-based abnormal behavior discovery method can realize a rapid discovery of abnormal trajectories and effective judgment of abnormal behavior patterns.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。