Manipulating chiral photon generation from plasmonic nanocavity-emitter hybrid systems: from weak to strong coupling.

阅读:13
作者:Yang Jian, Hu Huatian, Zhang Qingfeng, Zu Shuai, Chen Wen, Xu Hongxing
By confining light into a deep subwavelength scale to match the characteristic dimension of quantum emitters, plasmonic nanocavities can effectively imprint the light emission with unique properties in terms of intensity, directionality, as well as polarization. In this vein, achiral quantum emitters can generate chiral photons through coupling with plasmonic nanocavities with either intrinsic or extrinsic chirality. As an important metric for the chiral-photon purity, the degree of circular polarization (DCP) is usually tuned by various scattered factors such as the nanocavity design, the emitter type, and the coupling strategy. The physical mechanisms of the chiral photon generation, especially when plasmons and emitters step into the strong coupling regime, are less explored. In this paper, we extended the coupled-oscillator and Jaynes-Cummings models to their chiral fashion to account for the above factors within a single theoretical framework and investigated the chiroptical properties of a plasmonic nanocavity-emitter hybrid system from weak to strong coupling. It was demonstrated that both the circular differential scattering and prominent scattering DCP rely on the intrinsic chirality generated by breaking the mirror symmetry with the emitter, and is thereby tunable by the coupling strength. However, the luminescence DCP (as high as 87 %) is closely related to the extrinsic chirality of the bare nanocavity and independent of the coupling strength. The results thus reveal two different physical mechanisms of generating chiral photons in scattering and luminescence. Our findings provide a theoretical guideline for designing chiral photon devices and contribute to the understanding of chiral plasmon-emitter interaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。